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Abstract

The influence of a set of satellite oscillators on the response behavior of a master oscillator, to which the
set is coupled, is of fundamental significance to structural acoustics and beyond. The focus is largely on the
induced loss factor that the satellite oscillators generate in the impedance of the master oscillator. Much of
the research work performed on behalf of this investigation employed basically sprung masses for the
satellite oscillators. A sprung mass is a primitive type of satellite oscillator and, as such, limitations are
imposed on the range of applicability of these research works. In this paper more elaborate satellite
oscillators are introduced; and, especially, a wider range of coupling forms and strengths are investigated. A
number of new insights are, thereby, obtained. In particular, this paper facilitates further studies of the
relationships among the linear impedance analysis, the energy analysis and the statistical energy analysis.
These studies are in progress and will be subsequently reported.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

This paper investigates the influence exerted on a master oscillator by its coupling to a set of
satellite oscillators [1]. (For those readers who may wish to consult a more extensive treatise on
this subject matter, Ref. [1] is available upon request.) The master oscillator represents a master
dynamic system and the set of satellite oscillators represents an adjunct dynamic system. The
master dynamic system and the adjunct dynamic system constitute; in coupling, the complex
(dynamic system) under investigation. The influence of concern is the loss factor that is added to
the indigenous loss factor in the impedance that governs the motion of the master oscillator. This
induced loss factor is acquired by the master oscillator by virtue of its coupling to the set of
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satellite oscillators. It was shown previously that if the satellite oscillators are merely masses (mass
elements) and the coupling coefficients are merely springs (stiffness elements), the induced loss
factor is independent of the loss factors that are assigned to the satellite oscillators [2–12]. This
complex, comprising a master oscillator and a coupled set of sprung masses, is sketched in Fig.
1(a). The revelation that the induced loss factor is independent of the loss factors of the sprung
masses caused several difficulties; none more stunning than ‘‘where did the energy go?’’ After all
one may argue, this independence would permit vanishing values to be assigned to the loss factors
of these sprung masses without affecting the induced loss factor! There were those who speculated
that this independence may remain valid for situations in which the satellite oscillators and their
couplings to the master oscillator may be different from those of sprung masses. Also, there were
those who proposed that if one removes the restriction that the satellite oscillators are uncoupled
to each other, a mechanism of damping may arise which will restore the balance of power and
hence the conservation of energy [2–12]. These schemes were proposed despite the simplicity and
the linearity of the equations of motion involved in the analysis. Notwithstanding that real
dynamic systems may be modelled by a set of oscillators that are uncoupled to each other. Indeed,
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Fig. 1. (a) A master oscillator attached to a set of sprung masses; a sprung mass comprises a mass element coupled to

the master oscillator via a stiffness element. (b) A set of satellite oscillators coupled to a master oscillator; the couplings

comprise mass, stiffness and gyroscopic elements.
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usually a resonating dynamic system may be analyzed in terms of modes that are by definition
orthogonal. When the spatial dependence is removed by this orthogonality, the modes assume
analytical forms commensurate with a set of oscillators that are uncoupled to each other. Does it
then make sense that the mere lack of couplings among the satellite oscillators is the essential
remedy for the violation of the law of conservation of energy?

In this paper not all the difficulties previously encountered are resolved; rather, minor, but
significant extensions in scope are introduced. Although the restriction that the satellite oscillators
are uncoupled to each other is retained, stiffness elements are introduced to the satellite oscillators
so they may become true oscillators. Also, the couplings are no longer prescribed by stiffness
elements alone, but, in addition, incorporate mass and gyroscopic elements as sketched in Fig.
1(b) [13, 14] (cf. Fig. 1(a)). This incorporation not only allows for variations in the coupling forms,
but also in the coupling strengths. Under reasonable definitions the sprung masses indicate high
coupling strength. In this way, moderate and weak coupling strengths may be integrated into the
investigation. Imperatively, the independence of the induced loss factor from the values of the
assigned loss factors of the satellite oscillators is properly interpreted and defined. In this
definition, the law of conservation of energy remains intact without resorting to explanations
transcending physics. Finally, preparations for an energy analysis (EA) of the elaborated complex
are made. This energy analysis is to be subsequently reported [15].

Initially, the analytical developments are presented. The equations of motion are cast in terms
of the impedances of the master oscillator, the satellite oscillators and the couplings. The
couplings, again, are limited to those between the master oscillator and the individual satellite
oscillators. Moreover, the external force drive is applied only to the master oscillator.

The resonance frequency distribution and the assigned loss factors of the satellite oscillators are
specified. These loss factors are cast in terms of the associated modal overlap parameters. A
number of simplifying assumptions are made with respect to defining parameters of the satellite
oscillators. Under these assumptions estimates of the induced loss factor are made. Within the
frequency span of the resonance frequencies and for values of modal overlap parameters less than
unity, the induced loss factors, as functions of frequency, undulate. The excursions in these
undulations increase as the modal overlap parameters decrease. Significantly, the mean-value
levels of these induced loss factors coincide. This coincidence level is assumed by the induced loss
factor when the modal overlap parameter is largely equal to unity. For values of the modal
overlap parameters that exceed unity, the induced loss factors do not undulate and show higher
erosions with increases in the modal overlap parameter. An erosion is defined as a decrease in level
from that assumed by the mean-value level when the modal overlap parameter is largely equal to
unity.

The expression for the induced loss factor, which comprise a summation over the individual
satellite oscillators, is modified by extrapolations and interpolations so that the summation
qualifies for replacement by integration. It is shown that such a replacement is tantamount to an
averaging process that is reminiscent of the mean-value method proposed by Skudrzyk [16]. The
first order approximation (FOA) of the integration yields an induced loss factor that assumes the
level that this quantity attains when the summation is retained and the modal overlap parameter is
largely unity. It is this FOA level of the induced loss factor that is independent of the modal
overlap parameters and, by association, is independent of the loss factors assigned to the satellite
oscillators.
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Finally, the effects caused in the induced loss factor by statistical variations, in some of the
parameters that define the satellite oscillators, are briefly considered. This summary is included in
order to assess the impact that the simplification of parameters may have on the above results. It
transpires that the variations in the parameters produce expected fluctuations in the levels of the
induced loss factor. Graphical illustrations of these fluctuations are offered.

2. Analytical developments and definition of the complex to be analyzed

The impedance of the isolated master oscillator Zo
o oð Þ is defined by

Zo
o oð Þ ¼ ioMoð Þ 1 � yð Þ�2

� �
1 ¼ iZo

� �
; y ¼ o=oo

� �
; ooð Þ2¼ Ko=Mo

� �
; ð1aÞ

where Moð Þ and Koð Þ are the mass and stiffness elements of the master oscillator, respectively,
and Zo

� �
is the indigenous loss factor that is associated with the stiffness element; and Zo

� �
is an

assigned loss factor. Analogously, the impedance Zr oð Þ of the (r)th satellite oscillator in isolation
is defined by

Zr oð Þ ¼ iomrð Þ 1 � zrð Þ2 1 þ iZr

� �� �
; xr ¼ or=oo

� �
;

zr ¼ xr=y
� �

; orð Þ2¼ kro=mr

� �
; ð1bÞ

where (mr) and (kro) are the mass and stiffness elements of the (r)th satellite oscillator, respectively,
and Zr

� �
is the indigenous loss factor that is associated with the stiffness element; again, Zr

� �
is an

assigned loss factor. It is further defined that the impedance Zcr oð Þ of the coupling between the
master oscillator and the (r)th satellite oscillator be stated in the form

Zcr oð Þ ¼ iomrð Þ %mcr � zcrð Þ2 1 þ iZcr

� �� �
; %mcr ¼ ðmcr=mcrÞ;

xcr ¼ ocr=oo

� �
; zcr ¼ xcr=y

� �
; ocrð Þ2¼ kcro=mr

� �
; ð1cÞ

where ðmcrÞ and ðkcroÞ are the mass and the stiffness elements of the prescribed coupling,
respectively, and Zcr

� �
is the loss factor that is associated with the stiffness element; once again,

Zcr

� �
is an assigned loss factor. There is reason to define yet another impedance quantity Z�

cr oð Þ
that is related to the coupling impedance Zcr oð Þ; namely

Z�
cr oð Þ ¼ iomrð Þ %mcr þ zcrð Þ2 1 þ iZcr

� �� �
: ð1dÞ

To complete the definition of the coupling between the master oscillator and the (r)th satellite
oscillator, a gyroscopic coupling coefficient (Gr) needs to be specified [13, 14]. It is convenient to
normalize (Gr) in the form

gr ¼ Gr= oomrð Þ
� �

: ð1eÞ

A sketch of the complex comprising the master oscillator coupled to a set of satellite oscillators is
depicted in Fig. 1(b). In the present investigation the satellite oscillators comprise the adjunct
dynamic system. It is assumed in this paper that the satellite oscillators are uncoupled to each
other; the coupling is only between each satellite oscillator and the master oscillator and vice
versa. The master oscillator comprises the master dynamic system. As already mentioned, much
of the literature to date deals with a complex—a master dynamic system coupled to an adjunct
dynamic system—in which a satellite oscillator is merely a mass element and the coupling of this
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oscillator to the master oscillator is merely a stiffness element; namely, a complex for which

korD0; mcrD0 and GrD0: ð2Þ

This specific complex is sketched in Fig. 1(a) [2–12]. Largely, the purpose in the present paper is to
investigate the influence of negating the impositions stated in Eq. (2). The linear equation of
motion of the master oscillator prior to its coupling to any set of satellite oscillators may be stated
in the form

Zo
o oð ÞVo

o oð Þ ¼ Pe oð Þ; ð3Þ

where Vo
o oð Þ is the response, Zo

o oð Þ is the impedance of the master oscillator in isolation, and
Pe oð Þ is the external force-drive to which the master oscillator is subjected. In this paper only the
master oscillator is externally force driven and the superscript (o) designates quantities that
pertain to the master oscillator in the absence of couplings—the master oscillator in isolation (cf.
Eq. (1a)). On the other hand, in the presence of couplings and with the assistance of Fig. 1(b), the
linear equations of motion of the master oscillator in situ and of a typical satellite oscillator in situ
are derived. A straightforward algebraic manipulation of these equations yields

Zo oð ÞVo oð Þ ¼ Pe oð Þ; Vr oð Þ ¼ Br oð ÞVo oð Þ; ð4Þ

where

Zo oð Þ ¼ Zo
o oð Þ þ

XR

1

Zr oð ÞZcr oð Þf g þ Qcrð Þ2
� �

Zr oð ÞZcr oð Þ½ 	�1; ð5aÞ

Br oð Þ ¼ Z�
cr oð Þ þ Gr

� �
Zr oð Þ þ Zcr oð Þ½ 	�1; ð5bÞ

Qcrð Þ2¼ 4mcrkcr þ Grð Þ2; ð5cÞ

the quantities Vo oð Þ and Vr oð Þ are the responses of the mass (Mo) of the master oscillator and the
mass (mr) of the (r)th satellite oscillator, respectively, (R) is the number of satellite oscillators that
are coupled to the master oscillator, Pe oð Þ is the external force drive that is applied externally to
the master oscillator, (Gr) is the gyroscopic coupling coefficient and the quantities
Zo

o oð Þ; Zr oð Þ; Zcr oð Þ and Z�
cr oð Þ are stated explicitly in Eq. (1) [13,14]. Again, straightforward

manipulations and normalizations may cast Eq. (5) in the form

Zo oð Þ ) Zo yð Þ ¼ ioMoð Þ 1 � yð Þ�2 1 � S yð Þ½ 	 þ i Zo þ ZI yð Þ
� �� �� �

;

Br oð Þ ) Br yð Þ ¼ � %mcr þ Zcrð Þ2 1 þ iZcr

� �
� i gr=y

� �� �
; ð6aÞ

where

xrrð Þ2 1 þ iZrr

� �
¼ xrð Þ2 1 þ iZcr

� �2þ xcrð Þ2 1 þ iZcr

� �
; ð7aÞ

SðyÞ � iZI ðyÞ
� �

¼
XR

1

SrðyÞ � iZIrðyÞ
� �

SrðyÞ � iZIrðyÞ
� �

¼ ðyÞ2 %mr 1 � zrð Þ2 1 þ iZr

� �� ���
%mcr � zcrð Þ2 1 þ iZcr

� �� �
� qcr=y

� �2
o

1 þ %mcrð Þ � zrrð Þ2 1 þ iZcr

� �� ��1
o
; ð7bÞ
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and again

zrr ¼ xrr=y
� �

; zr ¼ xr=y
� �

; zcr ¼ xcr=y
� �

;

qcr=y
� �2¼ 4 %mcr zcrð Þ2 1 þ iZcr

� �
þ gr=y

� �2
; qcr ¼ Qcr= oomrð Þ

� �
: ð7cÞ

One notes that the compound coupling parameter (qcr) is a function of the mass and gyroscopic
coupling parameters %mcrð Þ and (gr), respectively. These coupling parameters are defined in
Eqs. (1c) and (1e), respectively. One also notes, with satisfaction, that the dependence of the terms
in the sum on the gyroscopic coupling parameter (gr) is quadratic so that the sign assigned to the
gyroscopic coefficient (Gr) plays no role in the influence of the individual satellite oscillators on the
impedance of the master oscillator. The gyroscopic coupling is in quadrature to both the mass and
the stiffness control couplings [13, 14].

Examination of Eqs. (6) and (7) shows that the normalized impedance that the satellite
oscillators collectively induce on the master oscillator may be cast in terms of the two-vector

S yð Þ; ZI yð Þ
� �

Rð Þ; which is dependent on (R), as indicated [1]. The evaluation of this two-vector,
however, is predicated on explicitly specifying the two-vector xrr; Zrr

� �
; its two supplemental

components xr; Zr

� �
and xcr; Zcr

� �
and, finally, assigning the compound coupling (qcr). The two-

vector xrr; Zrr

� �
is designed, for the sake of convenience, to stay fixed with respect to variations in

the index (r), 1prpR: In this design, the springs that are placed on either side of the mass of a
satellite oscillator are set to be similar. This similarity is expressed in the form

xrð Þ ¼ arð Þ1=2 xo
r

� �
; xcrð Þ ¼ acrð Þ1=2 xo

r

� �
; xrrð Þ ¼ ar þ acrð Þ1=2 xo

r

� �
; ð8Þ

where arð Þ and acrð Þ are dubbed the spring factors. Further, by design, as in Ref. [12], here too
(xrr) is assigned a priori with equal numbers of resonance frequencies on either side of the
resonance frequency ooð Þ of the master oscillator and the distribution is aligned in ascending
order, namely

xrrp; q ¼ r þ 1ð Þ; 1prp R � 1ð Þ: ð9Þ

Borrowing, again, from Ref. [12], xo
r

� �
is stated in the form

xo
r ¼ 1 þ 1 þ Rð Þ � 2rf g g=2R

� �� ��1=2
; go1: ð10Þ

Examination of Eqs. (6) and (7) in the light of Eq. (8), shows that the normalized resonance
frequencies of the satellite oscillators, in situ, are ascertained by satisfying the equality

1 þ %mcrð Þ ¼ zrrð Þ2; 1 þ %mcrð Þ yð Þ2¼ xrrð Þ2; xrrð Þ2¼ xrð Þ2þ xcrð Þ2;

yð Þ2¼ 1 ¼ mcrð Þ�1 ar þ acrð Þ
� �

xo
r

� �2
: ð11aÞ

It is convenient to define the assigned loss factors Zr

� �
and Zcr

� �
of the satellite oscillators and the

couplings in terms of the corresponding modal overlap parameters (br) and (bcr), respectively. The
definitions are in the forms

Zr ¼ br=y
� �

vr yð Þoo½ 	�1; Zcr ¼ bcr=y
� �

vr yð Þoo½ 	�1:

Zrr xrrð Þ2¼ Zr xrð Þ2þZcr xcrð Þ2¼ Zrar

� �
þ Zracr

� �� �
xo

r

� �2
;

ð12aÞ

where vr yð Þ is the modal density of the satellite oscillators and Eq. (8) is used [13]. Again, with the
intended exceptions of the last section in this paper, it is convenient, without a great loss in
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generality, to assume that the spring factors arð Þ and acrð Þ; the normalized coupling parameters
grð Þ and %mcrð Þ and the modal overlap parameters brð Þ and bcrð Þ are to be independent of (r),

namely

ar ¼ a; acr ¼ ac; gr ¼ g; %mcr ¼ %mc; br ¼ bcr ¼ b: ð13Þ

In addition and, again, as introduced in Ref. [12], the normalized mass ( %mr) of the (r)th satellite
oscillator is assumed to be independent of (r) and to be of the form

%m ¼ m=Mo

� �
¼ Ms=Mo

� �
Rð Þ�1; Ms ¼

XR

1

mrð Þ: ð14Þ

Under the impositions stated in Eqs. (13) and (14), Eqs. (11a) and (12a) reduce to

y ¼ xo
r ; 1 þ %mcð Þ ¼ aþ acð Þ; ð11bÞ

Zr ¼ b=y
� �

vr yð Þoo½ 	�1; Zcr ¼ b=y
� �

vr yð Þoo½ 	�1;

Zrr ¼ b=y
� �

vr yð Þoo½ 	�1; Zr ¼ Zcr ¼ Zrr;
ð12bÞ

respectively. One may argue that the modal density vr(y) of the satellite oscillators under the
conditions stated in Eqs. (8) and (13) is given by

vr yð Þoo½ 	 ¼ 2R=g
� �

xo
r

� ��3
; y ¼ xo

r

� �
: ð15Þ

The relationship between (y) and (xo
r ) stated in Eq. (11b) establishes, with the use of Eq. (10), a

relationship between (y) and (r). Clearly, if (r) is discrete so is (y). Within the context of this paper
(y) is treated, nonetheless, as a continuous variable. From Eqs. (12b) and (15) one obtains

Zr ¼ Zcr ¼ Zrr ¼ b g=2R
� �

xo
r

� �
; Z yð Þ ¼ b g=2R

� �
yð Þ2: ð12cÞ

The resonance frequency distribution (xo
r ), as defined in Eqs. (10) and (11), is depicted, as a

function of the index (r), in Fig. 2(a). In this figure the selected standard values of (R) and gð Þ are
used; these values are 27 and 0.6, respectively. In Fig. 2(b), Zr

� �
is depicted, as a function of the

index (r), for the standard values of (R) and gð Þ: R ¼ 27 and g ¼ 0:6: In Fig. 2(b) three values of
the modal overlap parameter (b) are employed; b=0.1, 2.0 and 10. The standard value of (b) is
selected to be 0.1. The discrete values of (xo

r ) and Zr

� �
as functions of the index (r) are noted in Fig.

2; this discreteness is, by definition, expected.
Introducing the simplifications and impositions rendered in Eqs. (8–15) into Eq. (7), one may

derive the explicit expression for the induced loss factor ZI yð Þ in the form

ZI yð Þ ¼
XR

1

ZIr yð Þ;

ZIr yð Þ ¼ � yð Þ2Im %m 1 � a zo
r

� �2
1 þ iZr

� �h i
%mc � ac zo

r

� �2
1 þ iZr

� �h inn

�4 %mcac zo
r

� �2
1 þ iZr

� �
� g=y

� �2
o

1 þ %mcð Þ � aþ acð Þ zo
r

� �2
1 þ iZr

� �h i�1
�
; zo

r ¼ xo
r=y

� �
; ð16Þ
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where %mcð Þ; gð Þ; yð Þ; að Þ; acð Þ; xo
r

� �
; %mð Þ and Zr

� �
are stated in Eqs. (1), (8), (10) and (12)–

(14), respectively. The computations of ZI yð Þ are largely carried out assigning the standard values

%mc ¼ g ¼ 0; ac ¼ 1; Ms=Mo

� �
¼ 10�1; b ¼ 0:1ð Þ ; g ¼ 0:6 and R ¼ 27; ð17Þ

where %mc; g and ac define the couplings, (Ms) is stated in Eq. (14), (b) is the modal overlap
parameter, gð Þ is the frequency bandwidth parameter stated in Eq. (10), and (R) is the number of
satellite oscillators in the set. When these standard assignments are deviated from, specific
mentions are to be rendered, notwithstanding that, at times, the employment of these standard
values may be reiterated. The computations performed on behalf of ZI yð Þ; as stated in Eq. (16), are
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Fig. 2. (a) A resonance frequency distribution xrr ¼ xo
r

� �
of a set of satellite oscillators, as a function of the index (r) (cf.

Eq. (10)): o, discrete (r); �, continuous (r). (b) The loss factor Zrr ¼ Zr

� �
assigned to a set of satellite oscillators as a

function of the index (r) (cf. Eq. (12c)): o, modal overlap parameter (b) equal to (0.1); x, modal overlap parameter (b)

equal to (2.0); &, modal overlap parameter (b) equal to (10). o, x, &, Discrete (r); �, continuous (r).
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presented graphically in Fig. 3 by the standard curve. Clearly, undulations in the induced loss
factor ZI yð Þ; as a function of (y), are present in the levels of this quantity within the normalized
frequency bandwidth D yð Þ: This frequency bandwidth spans the resonance frequencies of the
satellite oscillators; the frequency bandwidth, utilizing Eqs. (10) and (15), is given by

D yð ÞD g=2
� �

; 1 þ g=2
� �� ��1=2oyo 1 � g=2

� �� ��1=2
: ð18Þ

Variations in the standard values in the computations are depicted in Figs. 3–5. In Fig. 3 the
thinner curve and the thinnest curve represent the induced loss factor ZI yð Þ with changes in the
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Fig. 3. Induced loss factor ZI ðyÞ; as a function of (y), for a stiffness control coupling form with ac ¼ 1:0 a ¼ 0:0½ 	; g ¼
%mc ¼ 0 (sprung masses), and R=27 and Ms;Moð Þ = 0.1: b=0.1; b=2.0; b=10; first order approximation (FOA).

Fig. 4. Induced loss factor ZI ðyÞ; as a function of (y), for a stiffness control coupling form with ac ¼ 1:0 a ¼ 0:0½ 	; g ¼
%mc ¼ 0 (sprung masses), and R=7 and Ms;Moð Þ = 0.1: b=0.1; b=2.0; b=10; first order approximation (FOA).
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modal overlap parameter (b) from its standard value of 0.1–2.0 and then to 10.0, respectively.
Since in both these changes (b) exceeds unity the undulations in ZI yð Þ; as a function of (y), are
dramatically suppressed by these changes. Yet, some minor differences are observed in the levels
of ZI yð Þ pertaining to b=2.0 and 10. Within the normalized frequency bandwidth defined in
Eq. (18), the levels in the latter case are largely lower than those in the former. This decrease in
levels is dubbed erosion. Fig. 3 is repeated in Fig. 4 except that the number (R) of satellite
oscillators is changed from its standard value of 27–7. The differences between Figs. 3 and 4 are
readily interpretable. Thus, since the couplings parameters %mc; ac and g and the mass ratio
Ms=Mo

� �
remain the same, the levels and the undulations and their suppressions in Fig. 3 are

duplicated in Fig. 4. On the other hand, in Fig. 5 the change is made only with respect to the
coupling parameters; the change is from the standard values stated in Eq. (17) to %mc ¼ ac ¼
0; g ¼ 0:15: This change is not only to weaker coupling, but to coupling that is governed by
gyroscopic elements. One observes that except for much lower levels and slightly negative slopes
in the curves toward higher values of (y), which is typical of gyroscopic coupling elements, Fig. 5
bears direct resemblance to Fig. 3 [1].

3. Replacing a summation by integration

The undulations that are present in the induced loss factor ZI yð Þ; as a function of (y), are a
reflection of the modal character of the summand ZIr yð Þ: The presence of this modal character is
readily deciphered in Eq. (16). When this summand as a function of the index (r) becomes smooth
so that its modal character is suppressed, ZI yð Þ; as a function of (y), is no longer undulated. This
phenomenon is directly related to the modal overlap parameter (b) [13]. When (b) exceeds unity
the modal character of the summand is suppressed. In this case, the summation qualifies to be
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Fig. 5. Induced loss factor ZI ðyÞ; as a function of (y), for a gyroscopically controlled coupling form ac ¼ %mc ¼
0 a ¼ 1:0½ 	; g ¼ 0:15 (moderate coupling), and R=27 and Ms=Mo

� �
=0.1: b=0.1; b=2.0; b=10; first order

approximation (FOA).
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replaced by an integration. In this integration the index (r) is assigned a continuous connotation;
namely

ZI yð Þ
 �

X

XR

1

ZIrðyÞ ¼
XR

1

ZI y; rð ÞðÞ )
Z Rþð1=2Þ

ð1=2Þ
ZI ðy; rÞ dr; b > 1: ð19aÞ

A question arises: when (b) is less than unity, what can one do to suppress the modal character of
the summand so that the summation can qualify to be replaced by integration? By extrapolations
and interpolations one may introduce into the summand an artificial smoothness and, thereby,
remove much of the modal character from this quantity. A manner of accomplishing this
smoothness analytically is

ZI y;R1
� �

)
XR

1

R1
� ��1 XR1=2ð Þ

r1¼ �R1=2ð Þ
ZI y; r þ r1=R1

� �� �
; bo1; ð19bÞ

where (R1) is an integer that is chosen large enough to attain the smoothness required of the
summand so that the replacement of the summation by integration qualifies. If the summation in
Eq. (19b) is absolutely (non-conditionally) convergent then from Eq. (19b) one may derive

ZI yð Þ
 �

)
Z Rþð1=2Þ

ð1=2Þ
ZI y; rð Þ dr; bo1; ð19cÞ

where (r) assumes here a continuous form. It is clear from Eq. (19b) that the level of ZI yð Þ
 �

is an
averaged level of the induced loss factor ZI yð Þ stated in Eq. (16). It transpires that this averaging
procedure is commensurate with the mean-value method proposed by Skudrzyk [16]. From
Eqs. (19a) and (19c) one obtains

ZI yð Þ
 �

)
Z Rþð1=2Þ

ð1=2Þ
ZI y; rð Þ dr; ð20Þ

where the reference to the value of (b) becomes superfluous. Casting ZIr yð Þ of Eq. (16) in the form
ZI y; rð Þ and placing that quantity in Eq. (20) the integral is ready to be performed. The
performance is facilitated by rendering a suitable transformation of the variable over which the
integral needs to be carried out. With such transformation of variable one readily derives

ZI ðyÞ
 �

¼ D C yð Þ þ O Z yð Þf g2
� �

; ZI yð Þ
 �

) Z1
I yð Þ ¼ DCðyÞ ð21Þ

with

D ¼ p=2
� �

2R=g
� �

Ms=Mo

� �� �
; ð22aÞ

C yð Þ ¼ %mc þ acð Þ2þ g=y
� �2

h i
1 þ %mc½ 	�1; 1 þ %mcð Þ ¼ aþ acð Þ; ð22bÞ

O ¼ 1 þ %mc � acð Þac½ 	; ð22cÞ

where Z1
I yð Þ is the FOA to ZI yð Þ

 �
and the validity of Eq. (21) is restricted to the frequency

bandwidth defined in Eq. (18) [17]. The quantity C(y) is dubbed the coupling factor. The coupling
factor may be employed to categorize the strength of the coupling. The categorization may be
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expressed in the form

X1; strong coupling; ð23aÞ

C yð Þ D3 � 1�2; moderate coupling; ð23bÞ

p10�3;weak coupling ð23cÞ

The term O Z yð Þf g2; in Eq. (21), is of the order of the higher approximations to the integral,
notwithstanding that situations exist in which (O) is identically zero; e.g., when the satellite
oscillators are sprung masses for which ac ¼ 1; g ¼ %mc ¼ 0: In passing it is observed that for the
sprung masses the coupling factor is unity which categorizes sprung masses as strongly coupled.
Significantly, Z1

I yð Þ and, therefore, the FOA of Z1
I yð Þ

 �
is independent of the modal overlap

parameter (b). Largely, it is this independence that caused some of the difficulties mentioned
earlier in the introduction. These difficulties stem from the notion that the modal overlap
parameter (b), and consequently the indigenous loss factors of the satellite oscillators Z yð Þ; may be
assigned, a priori, the value zero [2–10]. Eq. (19) makes clear that the validation of Z1

I yð Þ
 �

is called
into question by this assignment. The FOA Z1

I yð Þ of the mean-value ZI yð Þ
 �

of the induced loss
factor, as a function of (y), is depicted graphically in Figs. 3–5 by the thicker curve. The
impositions on Z1

I yð Þ correspond to those imposed on ZI yð Þ depicted in these same figures. A
remarkable property of the FOA of ZI yð Þ

 �
; namely Z1

I yð Þ
 �

; emerges when this quantity is
superimposed on the respective Figs. 3–5. It is now observed, in these figures, that the mean-value
levels of the undulations in ZI yð Þ; when (b) is small compared with unity, b{1; converges onto the
levels of the FOA of this quantity, namely it converges on Z1

I yð Þ [12,15]. Conversely, when (b) is
small compared with unity, exhibiting Z1

I yð Þ alone and neglecting to mention that these mean-
value levels are substituted for highly undulated levels, is not a viable scientific procedure, unless
ignorance is bliss [12]. On the other hand, when (b) approaches and exceeds unity, the levels of
ZI yð Þ become free of undulations, but these levels erode with further increases of (b). The erosion
is revealed in Figs. 3–5 by comparing ZI yð Þ with Z1

I yð Þ in these figures, once again, remembering
that the latter quantity is independent of (b). The erosion worsens as the modal overlap parameter
(b) reaches higher and higher above unity; e.g., compare the curves, in Figs. 3–5, pertaining to
b=2.0 with the corresponding curves pertaining to b=10 [1].

4. A typical member of an ensemble of complexes supporting various parametric combinations

In the preceding evaluations the distribution of resonance frequencies xrrð Þ and the assigned loss
factors Zrr

� �
for the satellite oscillators are sequential functions of the index (r). These two

quantities, which are stated in Eqs. (11) and (12) and exemplified in Figs. 2(a) and 2(b),
respectively, may be smoothed out by extrapolations and interpolations into monotonic and
continuous functions of a continuous (r). This kind of smoothness is rarely found in practice and a
question arises as to what are the expected consequences of more practical assignments for these
parameters and others? In this section a few layers are removed in the quest to discover the
phenomena that may be encountered in the induced loss factor ZI yð Þ by the insertion of these
more realistic parametric values. Since the assignments for the parameters that define the satellite
oscillators and their couplings to the master oscillator, can hardly be drawn, a more generalized
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approach is undertaken to investigate the influence of introducing variations in these parametric
values. In particular, in this section two parameters are selected to carry these variations; either
individually or in unison. In the first, the index (r) of a satellite oscillator is assigned a pseudo-
statistical value. (Pseudo-statistical is in reference to a sample selected out of an ensemble of
random samples.) The index (r) is distributed sequentially and fractionally, in the range 1prp27:
A pseudo-statistical index is designated L(r), where L(r) #oL(q), q ¼ r þ 1ð Þ; 1prp R � 1ð Þ (cf.
Eq. (9)). In the second, the modal overlap parameter (br), with br ¼ bcr; is assigned a pseudo-
statistical value that is distributed in the ranges ð2ÞXbrXð0:1Þ and ð3:5ÞXbrXð1Þ; respectively.

ARTICLE IN PRESS

Fig. 6. Pseudo-statistical variations: (a) in the normalized index L(r) 1 þ Rð Þ�1; as a function of the normalized (integer)

index ðrÞ 1 þ Rð Þ�1; (b) in the modal overlap parameter ðbrÞ; ð0:1Þpbrpð2:0Þ; (c) in the modal overlap parameter

ðbrÞ; ð1:0Þpbrpð3:5Þ:
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The distribution of L(r) and of (br), with R=27, that are employed in this section are depicted
graphically in Figs. 6(a)–(c). The two-vector xrrð Þ; Zrr

� �� �
; as stated in Eqs. (8) and (10–12), is

typically depicted, for the pseudo-statistical values shown in Figs. 6(a),(b) and (c), in Figs. 7(a), (b)

ARTICLE IN PRESS

Fig. 7. Modification of pseudo-statistical variations: (a) in the resonance frequency distribution of satellite oscillators,

as a function L(r), with L(r) depicted in Fig. 6(a); (b) in the loss factors assigned to individual satellite oscillators with

(br) as depicted in Fig. 6(b); (c) in the loss factors assigned to individual satellite oscillators, with (br) as depicted in

Fig. 6(c).
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and (c), respectively. Fig. 7(a) depicts (xrr) as a function of L(r) and Figs. 7(b) and (c) depict Zrr

� �
;

as a function of (r). (cf. Fig. 2). It is observed, in Fig. 7(a), that the pseudo-statistical variations
embody the phenomenon of mode bunching in which variations in the modal density of the
satellite oscillators drastically vary as a function of L(r) [18]. On the other hand, as Figs. 7(b) and
(c) show, the loss factor Zrr

� �
; as a function of (r), faithfully follows the variations assigned to (br).

In Fig. 7(b) some of the values of (br) are less than unity, in Fig. 7c all the values of (br) are in
excess of unity.

The influence of the variations, described in Figs. 6 and 7, on the induced loss factor ZI yð Þ; as a
function of (y), is exemplified in Fig. 8. This figure represents a set of figures. This set of figures
presents a complete evolution in the process of applying the pseudo-statistical variations depicted
in Figs. 6 and 7 to the two parameters L(r) and ðbrÞ: The coupling in Fig. 8 is strong and is
defined by ac ¼ 1:0 a ¼ 0:0½ 	; %mc ¼ g ¼ 0; which pertains to sprung masses for the satellite
oscillators (cf. Eq. (23)). Corresponding treatments for moderate and weak couplings exhibit,
except for the levels of ZI yð Þ; the same results; e.g., cf. Figs. 8 and 9 [1]. In Fig. 9 the coupling is
moderate; CðyÞD0:022; see Eq. (23). The first figure in the set, e.g., Fig. 8a, as well as Fig. 9, depict
the base situation in which L(r)=r and br ¼ 1: Both, Figs. 8(a) and 9, exhibit undulations in the
levels of the induced loss factor ZI yð Þ; as a function of (y). However, the excursions of these
undulations are small and they are completely suppressed as soon as (br) approaches the value of
(2) (cf. Figs 3–5). Moreover, it is noted that there is a tinge of edge erosion in Fig. 8a and even in
Fig. 9. To confirm this statement and to provide for convenient and interpretable data from which
to judge the more erratic data that incorporate the pseudo-statistical variations, the FOA of ZI yð Þ;
namely Z1

I yð Þ; stated in Eq. (21), is superimposed on Figs. 8(a) and 9, and indeed on all other
figures in the series entitled Fig. 8. The quantity Z1

I yð Þ; in Figs. 8 and 9, is depicted by the bold
curves. (cf. Figs. 3–5). The second figure in the set, e.g., Fig. 8(b), depicts the situation in which
L(r) is as shown in Figs. 6a and 7a and br=1. From Fig. 8(b), it is observed that at a mode
bunching (a rich modal density) region the influence of the satellite oscillators, as expressed by
ZI yð Þ; is more pronounced than at a mode sparsity (a poor modal density) region [18]. The third
figure in the set, e.g. Fig. 8(c), depicts the situation in which L(r)=r and ðbrÞ is as shown in Figs.
6(b) and 7(b); i.e., the pseudo-statistical variations in the modal overlap parameter (br) entertains
values that are small compared with unity, and, therefore, as Fig. 8(c) shows, the levels of ZI yð Þ; as
a function of (y), tend to fluctuate. These fluctuations are most pronounced at and in the vicinity
of the resonance frequencies of those satellite oscillators to which the small values of (br) are
assigned. The fourth figure in the set, e.g. Fig. 8(d), depicts the situation in which L(r)=r and ðbrÞ
is as shown in Figs. 6(c) and 7(c); i.e., the pseudo-statistical variations in the modal overlap
parameter (br) entertains values that largely exceed unity. Fig. 8(d) shows that at and in the
vicinity of the resonance frequencies of those satellite oscillators to which (br) are assigned values
that approach and exceed unity; e.g., as depicted in Figs. 6(c) and 7(c), the fluctuations are largely
subdued; e.g., see Fig. 8(c) and contrast it with Fig. 8(d) [19]. The fifth and sixth figures in the set,
e.g., Figs. 8(e) and (f), depict the combined situation in which L(r) and ðbrÞ are as shown in Figs.
8(a) and (b) and in Figs. 8(a) and (c), respectively. When variations in both parameters are
combined; e.g., as depicted in Figs. 8(e) and (f), both characteristics can be identified in the levels
of the induced loss factor ZI ðyÞ; e.g., see Figs. 8(e) and (f), and contrast them, respectively, with the
pair Figs. 8(b) and (c), and then with the pair Figs. 8(b) and (d) [1]. That fluctuations do occur in
the response character of the complex, when parameters that describe it undergo changes, is not
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surprising. The purpose of this section is, however, to argue that fluctuations of the kind typified
in Fig. 8 need be kept in mind when presented with data of practical dynamic systems. The results
presented in this figure may help avoid either reading too much into such fluctuations or too little.

ARTICLE IN PRESS

Fig. 8. Induced loss factor ZI ðyÞ; as a function of (y), for a strong coupling defined by ac ¼ 1:0 a ¼ 0:0½ 	; %mc ¼ g ¼ 0;
implementing a number of pseudo-statistical variations (R=27 and Ms=M

� �
=0.1). First order approximation (FOA)

is superimposed. (a) L(r)=r and br=1, a base case. (b) L(r) as given in Fig. 6(a) and br=1. (c) L(r)=r and (br) as is

given in Fig. 6(b). (d) L(r)=r and (br) as given in Fig. 6(c). (e) L(r) as given in Fig. 6(a) and (br) as is given in Fig. 6(b).

(f) L(r) as given in Fig. 6(a) and (br) as is given in Fig. 6(c).
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